How to measure OPA using sensor technology in the field?

Workshop ICOH-CVD Varese 2017

Andreas Holtermann

NATIONAL RESEARCH CENTRE FOR THE WORKING ENVIRONMENT

Is it a need for sensor technology in the field?

What would we like to have diurnal technical measures on many participants of?

- Basic physical activity types (walking, stair climbing, running...)
- Body postures (sitting, standing, forward bending, arm elevation...)
- The physiological intensity (e.g. heart rate reserve)
- Time patterns of the exposures (e.g. EVA analyses)
- Fatigue and recovery (HRV, sleep...)
- Energy expenditure
- Manual handling
- Ambulatory blood pressure
- Temperature (environment)
- More ?

What is currently feasible to technically measure in the field over several days on many participants?

Basic physical activity types and body postures/movements

By using the Acti4 developed by NRCWE by any 3D accelerometer on thigh

Not aware of current commercial system which can do the same

Activity	Sensitivity (%)	Specificity (%)
Sitting	99.9	100.0
Standing	100.0	100.0
Walking	99.4	99.7
Running	98.7	99.9
Stairs	95.3	100.0
Cycling	99.9	100.0

Skotte et al. Detection of physical activity types using triaxial accelerometers. J Physical Activity & Health, 2014

Guideline for assessment of sedentary work

Applied Ergonomics 63 (2017) 41-52

A practical guidance for assessments of sedentary behavior at work: A PEROSH initiative

CrossMark

Andreas Holtermann ^{m, *}, Vera Schellewald ^{c, g}, Svend Erik Mathiassen ^e, Nidhi Gupta ^m, Andrew Pinder ^f, Anne Punakallio ^d, Kaj Bo Veiersted ⁿ, Britta Weber ^g, Esa-Pekka Takala ^d, Francesco Draicchio ^h, Henrik Enquist ¹, Kevin Desbrosses ⁱ, Maria Peñahora García Sanz ^j, Marzena Malińska ^b, María Villar ^j, Michael Wichtl ^a, Michaela Strebl ^a, Mikael Forsman ^k, Sirpa Lusa ^d, Tomasz Tokarski ^b, Peter Hendriksen ^m, Rolf Ellegast ^g

^a Austrian Workers' Compensation Board (AUVA), Wien, Austria

^b Central Institute for Labour Protection - National Research Institute (CIOP-PIB), Warszawa, Poland

^c German Sport University Cologne (DSHS), Köln, Germany

^d Finnish Institute of Occupational Health (FIOH), Helsinki, Finland

e University of Gävle, Gävle, Sweden

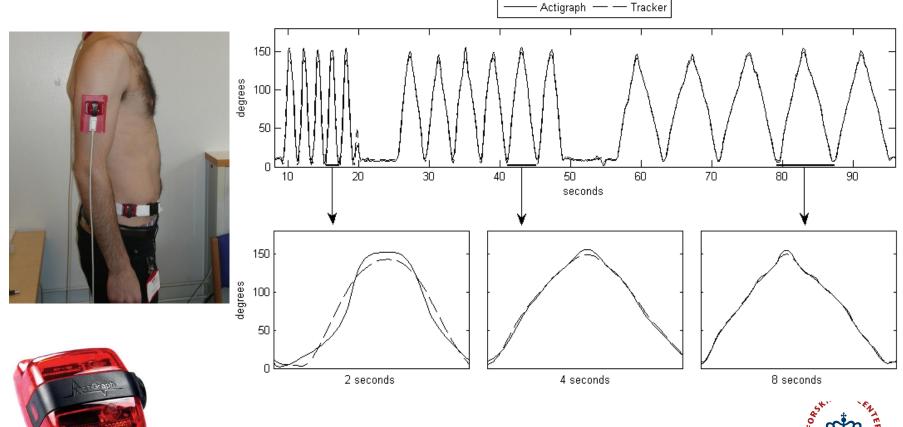
^f HSE's Health & Safety Laboratory (HSL), Buxton, Derbyshire, United Kingdom

^g Institute for Occupational Safety and Health of the German Social Accident Insurance (IFA), Sankt Augustin, Germany

^h National Institute for Insurance Against Accidents at Work (INAIL), Rome, Italy

¹ French National Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Vandoeuvre Les Nancy, France

^j Spanish National Institute for Safety and Hygiene at Work (INSHT), Madrid, Spain

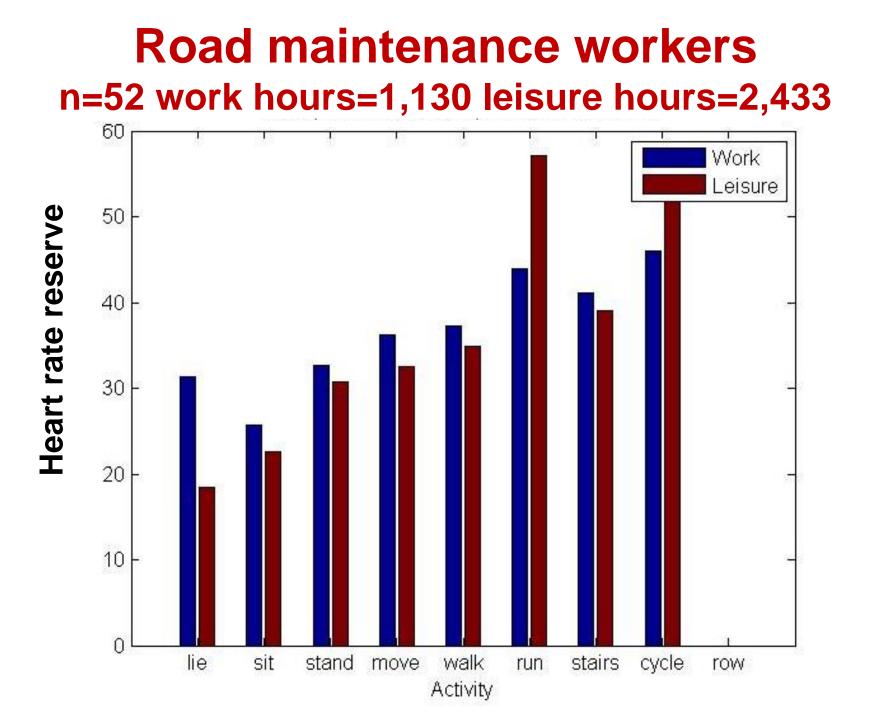

^k Karolinska Institutet (KI), Stockholm, Sweden

¹ Lund University, Skane Medical Services, Department of Laboratory Medicine, Occupational and Environmental Medicine, Lund, Sweden

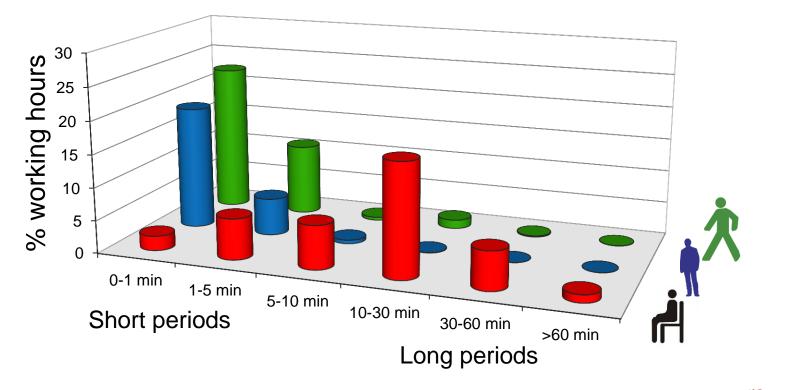
^m National Research Centre for the Working Environment (NRCWE), Copenhagen, Denmark

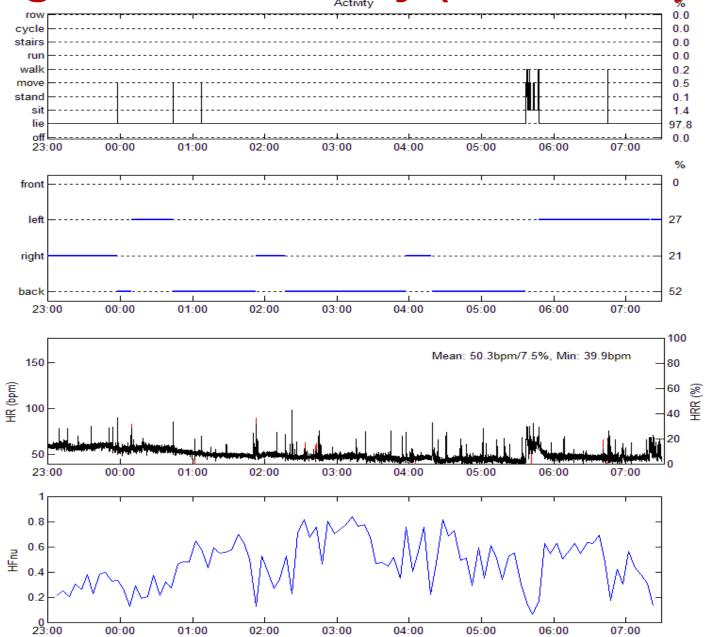
ⁿ National Institute of Occupational Health (STAMI), Oslo, Norway

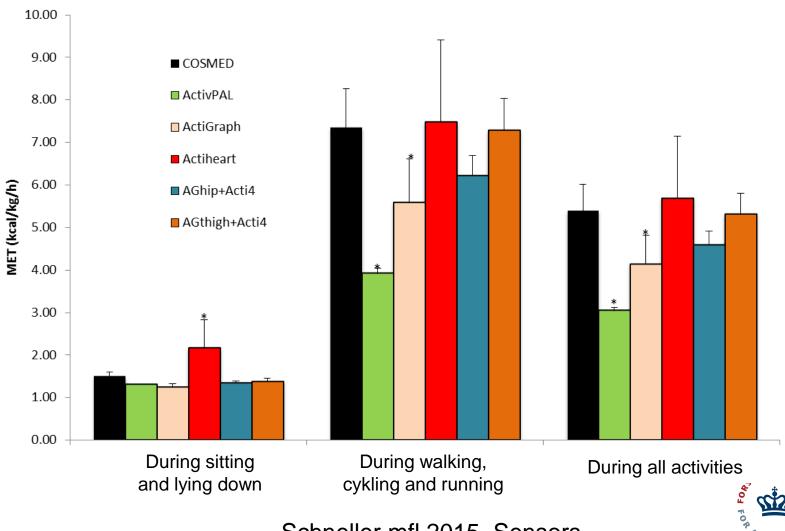
Measuring upper-arm and forward bending of back with 3D accelerometer using Acti4


The physiological intensity (e.g. heart rate reserve)

Actiheart




Time patterns of the exposures within and between days (e.g. EVA analyses)


Hallman et al 2015

Fatigue and recovery (HRV, sleep...)

CENTER OV

Energy expenditure

Schneller mfl 2015, Sensors

ARBEJDSM

Manual handling

 Options exists – but still challenging to apply in the field for long time on many participants

Surface EMG

MEDILOGIC SOLE

- <u>125-255 sensorer</u>
- <u>8 timers måling</u>
- <u>Summerer kraft i</u>
 <u>påvirkede område</u>

Ambulatory blood pressure

- Several systems exist
- Considerable advances
- Important to integrate with synchronized measures of body position and physical activity

Temperature (environment)

- Most 3D accelerometers measure temperature
- However, not provided by commercial software
- Not aware of validation studies (e.g. testing for drift, specific placement on body, range of temperatures etc)

Currently feasible to have diurnal technical measures on many participants of?

- Basic physical activity types (walking, stair climbing, running...) m V
- Body postures (sitting, standing, forward bending, arm elevation...)
- The physiological intensity (e.g. heart rate reserve) $\sqrt{}$
- Time patterns of the exposures (e.g. EVA analyses) $\sqrt{}$
- Fatigue and recovery (HRV, sleep...) $\sqrt{}$
- Energy expenditure
- Manual handling 📫
- Ambulatory blood pressure 📫
- Temperature (environment)

